Article ID Journal Published Year Pages File Type
543520 Microelectronics Journal 2011 10 Pages PDF
Abstract

This paper presents possible approaches to the design of a novel low-voltage, low-power, and high-precision current conveyor of the second generation (CCII±) based on the bulk-driven folded cascode operational transconductance amplifier (OTA) with extended input common-mode voltage range. This CCII± utilizes bulk-driven differential pairs to obtain a nearly rail-to-rail input stage at a low supply voltage. The proposed conveyor operates at a low supply voltage of ±400 mV with a reduced power consumption of only 64 μW. A current-mode multifunction filter is presented as an application of the CCII±. This filter provides five transfer functions simultaneously, namely low-pass, band-pass, high-pass, notch, and all-pass. The filter has the following properties and advantages: it employs three bulk-driven current conveyors BD-CCII±, three grounded resistors, and two grounded capacitors, which is suitable for integrated circuit implementation. Furthermore, the input signal is connected to the low-impedance X terminal of the BD-CCII± whereas the output signals are taken from the high-impedance output terminals Z+ and Z−. Finally, the pole frequency and quality factor of the designed filter are tunable independent of each other. PSpice simulation results using the 0.18 μm CMOS technology are included to prove the results.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,