Article ID Journal Published Year Pages File Type
543770 Microelectronics Journal 2009 6 Pages PDF
Abstract

Molecular beam epitaxy (MBE) of cubic group-III nitrides is a direct way to eliminate the polarization effects which inherently limits the performance of optoelectronic devices containing quantum well or quantum dot active regions. In this contribution the latest achievement in the MBE of phase-pure cubic GaN, AlN, InN and their alloys will be reviewed. A new reflected high-energy electron beam (RHEED) control technique enables to carefully adjust stoichiometry and to severely reduce the surface roughness, which is important for any hetero-interface. The structural, optical and electrical properties of cubic nitrides and AlGaN/GaN will be presented. We show that no polarization field exists in cubic nitrides and demonstrate 1.55 μm intersubband absorption in cubic AlN/GaN superlattices. Further the progress towards the development and fabrication of cubic hetero-junction field effect transistors (HFETs) is discussed.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
,