Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
544057 | Microelectronics Journal | 2006 | 6 Pages |
An analytic study of DC characteristics based on the drift-diffusion approach has been performed for the InP/GaAsSb DHBTs. The current transport of InP/GaAsSb/InP DHBTs has been investigated focusing the device temperature dependence. Our simulation results show that, at room temperature, the DC characteristics of the InP/GaAsSb/InP DHBTs similar to the conventional InP-based HBT using InGaAs as the base layer although a type-II energy band alignment is presented in the InP/GaAsSb HBT. However, due to different mechanisms for the electron injection from the emitter induced by the different conduction band alignments, the InP/GaAsSb HBTs may present a different temperature dependent behavior in term of device current gain as compared to the conventional InP/InGaAs HBTs. Higher current gain could be achieved by the InP/GaAsSb HBTs at elevated temperature.