Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
545216 | Microelectronics Reliability | 2010 | 5 Pages |
In this paper we propose a way to study leakage paths for electrons during data retention in floating gate non-volatile memories and especially in EEPROM memory cells. We investigate the main leakage paths, through tunnel oxide as well as through the tri-layer stack oxide “oxide/nitride/oxide” (ONO). We used a TCAD simulation of the full EEPROM cell to precisely determine the control gate bias voiding the electric field through ONO or tunnel oxide. Data retention measurements are then performed with simulated bias. We highlight the fact that leakage paths during data retention are different for extrinsic and intrinsic cells. Indeed, extrinsic behavior disappears when voiding electric field across tunnel oxide, showing these cells leak through tunnel oxide, whereas intrinsic behavior is the same whatever the electric field across tunnel oxide, showing charge loss in intrinsic cells is due to another path.