Article ID Journal Published Year Pages File Type
545437 Microelectronics Reliability 2010 8 Pages PDF
Abstract

The pin-to-pin electrostatic discharge (ESD) stress was one of the most critical ESD events for differential input pads. The pin-to-pin ESD issue for a differential low-noise amplifier (LNA) was studied in this work. A new ESD protection scheme for differential input pads, which was realized with cross-coupled silicon-controlled rectifier (SCR), was proposed to protect the differential LNA. The cross-coupled-SCR ESD protection scheme was modified from the conventional double-diode ESD protection scheme without adding any extra device. The SCR path was established directly from one differential input pad to the other differential input pad in this cross-coupled-SCR ESD protection scheme, so the pin-to-pin ESD robustness can be improved. The test circuits had been fabricated in a 130-nm CMOS process. Under pin-to-pin ESD stresses, the human-body-model (HBM) and machine-model (MM) ESD levels of the differential LNA with the cross-coupled-SCR ESD protection scheme are >8 kV and 800 V, respectively. Experimental results had shown that the new proposed ESD protection scheme for the differential LNA can achieve excellent ESD robustness and good RF performances.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,