Article ID Journal Published Year Pages File Type
546141 Microelectronics Reliability 2008 7 Pages PDF
Abstract

In this paper, we investigate the electrical stress effects on both the high-frequency and RF power characteristics of Si/SiGe HBTs. Simultaneously applying a high collector current density and a high collector–base voltage upon the Si/SiGe HBTs, their hot carriers will induce device performance degradation. This stress condition is similar to the DC bias conditions of a current source RF power amplifier, and is termed as a “mixed-mode” stress. We find that not only the maximum oscillation frequency but also the output power performance of Si/SiGe HBTs are suffered by this electrical stress. In addition, the degradations of high-frequency and power characteristics are also worse under a constant base-current measurement than those under a constant collector-current measurement. Finally, we developed a commercial large-signal model to examine the degradations of the parasitic resistances and ideality factors of base and collector currents to explain the RF power and linearity degradations.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , , , ,