Article ID Journal Published Year Pages File Type
546624 Microelectronics Journal 2007 7 Pages PDF
Abstract

In this work the forward J–V characteristics of 4H–SiC p–i–n diodes are analysed by means of a physics based device simulator tuned by comparison to experimental results. The circular devices have a diameter of 350 μm. The implanted anode region showed a plateau aluminium concentration of 6×1019 cm−3 located at the surface with a profile edge located at 0.2 μm and a profile tail crossing the n-type epilayer doping at 1.35 μm. Al atom ionization efficiency was carefully taken into account during the simulations. The final devices showed good rectifying properties and at room temperature a diode current density close to 370 A/cm2 could be measured at 5 V. The simulation results were in good agreement with the experimental data taken at temperatures up to about 523 K in the whole explored current range extending over nine orders of magnitude. Simulations also allowed to estimate the effect of a different p+ doping electrically effective profile on the device current handling capabilities.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,