Article ID Journal Published Year Pages File Type
546657 Microelectronics Journal 2007 13 Pages PDF
Abstract

This paper proposes a detailed design analysis of sequential circuits for quantum-dot cellular automata (QCA). This analysis encompasses flip-flop (FF) devices as well as circuits. Initially, a novel RS-type FF amenable to a QCA implementation is proposed. This FF extends a previous threshold-based configuration to QCA by taking into account the timing issues associated with the adiabatic switching of this technology. The characterization of a D-type FF as a device consisting of an embedded wire is also presented. Unique timing constraints in QCA sequential logic design are identified and investigated. An algorithm for assigning appropriate clocking zones to a QCA sequential circuit is proposed. A technique referred to as stretching is used in the algorithm to ensure timing and delay matching. This algorithm relies on a topological sorting and enumeration step to consistently traversing only once the edges of the graph representation of the QCA sequential circuit. Examples of QCA sequential circuits are provided.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,