Article ID Journal Published Year Pages File Type
547521 Microelectronics Reliability 2007 7 Pages PDF
Abstract

The DCIV method was applied to investigate negative bias temperature instability (NBTI) in SiO2 gate oxides. The DCIV technique, which measures the interface defect density independently from bulk oxide charges, delineates the contribution of the interface defect generation to the overall NBTI measured by the threshold voltage shift, ΔVTH. The DCIV results obtained during both stress and relaxation phases are generally consistent with the main features of the reaction–diffusion (R–D) model, which suggests positive charge generation/annealing at the Si/SiO2 interface due to breaking/re-passivation of the Si–H bonds. These results are in agreement with the spin-dependent recombination (SDR) experiments, which reflect the density of the Si dangling bonds at the Si/SiO2 interface (Pb centers) and its vicinity (E′ centers). Comparison of degradation kinetics as measured by DCIV, charge-pumping, and ID − VG (ΔVTH) techniques, however, suggests that ΔVTH includes additional contributions, most likely from the oxide bulk charges. For comparison, an NBTI study was also performed on the high-k HfO2/SiO2 gate stacks. After adjusting for the high-k related contribution, similar kinetics of the long-term stress interface trap generation was observed in SiO2 and high-k gate stacks suggesting a common mechanism of the interface degradation.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,