Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
548298 | Microelectronics Reliability | 2010 | 7 Pages |
In this paper, ultra-high vacuum chemical vapor deposition (UHV/CVD) was employed to synthesize silicon–germanium (SiGe), and sequence to endure annealing treatment. Morphological characterization, roughness, and microstructural morphology were observed by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The elements distribution, crystallographic, and nanomechanical behavior were carried out using energy-dispersive X-ray spectroscopy (EDS) mapping technique, X-ray diffraction (XRD), and nanoindentation technique.The annealing treated SiGe leads to the 2D germanium segregation on the surface. The phenomenon is interpreted in terms of dislocation-induced structural changes in annealing treatment. Thus, the dislocation propagation in the microstructure was observed. Subsequently hardness and elastic modulus were increased because of a comparatively unstable microstructure after annealing treatment.