Article ID Journal Published Year Pages File Type
549751 Microelectronics Reliability 2007 10 Pages PDF
Abstract

The interfacial reactions and ball shear properties of ball grid array (BGA) solder joints aged at 170 °C for up to 21 days were investigated with different displacement rates. Two different kinds of solders, Sn–37Pb and Sn–3.5Ag (all wt.%), and an electroplated Ni/Au BGA substrate were employed in this work. A continuous Ni3Sn4 intermetallic compound (IMC) layer was formed at the interfaces between both the Sn–37Pb and Sn–3.5Ag solders and the substrate during reflow. After aging, two different reaction layers, consisting of (AuxNi1−x)Sn4 IMC and Pb-rich phase, were additionally observed between the Sn–37Pb solder and the Ni3Sn4 IMC layer. The thicknesses of these interfacial reaction layers increased with increasing aging time. After reflow, all the fractures occurred inside the bulk solder. The fracture location of the Sn–37Pb solder joints was shifted toward the solder/Ni interface with increasing aging time and displacement rate, whereas the fracture of the Sn–3.5Ag solder joints mainly occurred inside the bulk solder, irrespective of the aging time and displacement rate. Consequently, the shear properties of the Sn–37Pb solder joints significantly decreased with increasing aging time, whereas those of the Sn–3.5Ag solder joints slightly decreased. The tendency toward brittle fracture of the Sn–37Pb solder joints was intensified with increasing displacement rate. The shear properties of the ductile solder joints increased with increasing displacement rate, while the displacement until fracture, deformation energy and displacement rate sensitivity of the brittle solder joints significantly decreased with increasing displacement rate.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, ,