Article ID Journal Published Year Pages File Type
549782 Microelectronics Reliability 2006 17 Pages PDF
Abstract

While gate metal sinking has been traditionally identified as the primary degradation mechanism in GaAs pseudomorphic high electron mobility transistors (PHEMTs), there is no physical demonstration of gate metal interdiffusion or understanding of the gate metal interdiffusion effect on reliability performance. This paper reviews our results on gate metal interdiffusion in 0.15-μm GaAs PHEMTs subjected to accelerated temperature lifetest. We used the techniques of focused ion beam (FIB), high-resolution energy-dispersive analysis with X-ray (EDX), and scanning transmission electron microscope (STEM). These results substantiate the observed d.c. and RF parametric evolution with respect to reverse gate leakage current (Ig), ideality factor, Schottky barrier height (ΦBN), transconductance (Gm), Idss, pinchoff voltage (Vpo), S21, and provide insights into the effect of gate metal interdiffusion on reliability performance. The comprehensive understanding of gate metal interdiffusion induced degradation is essential for GaAs PHEMTs due to their widespread military/space applications.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , , , , , , ,