Article ID Journal Published Year Pages File Type
5514888 Pesticide Biochemistry and Physiology 2016 6 Pages PDF
Abstract

•The field populations of N. lugens, S. furcifera and L. striatellus in China to dinotefuran were monitored in 2013-2015•Most populations of N. lugens had developed moderate resistance to dinotefuran in 2015•There was no cross-resistance of four insecticides to dinotefuran•Piperonyl butoxide displayed significantly synergism effect on the resistant field populations of N. lugens.

Three rice planthoppers, brown planthopper, Nilaparvata lugens, white-backed planthopper, Sogatella furcifera and small brown planthopper, Laodelphax striatellus, are important pests of cultivated rice in tropical and temperate Asia. They have caused severe economic loss and developed resistance to insecticides from most chemical classes. Dinotefuran is the third neonicotinoid which possesses a broad spectrum and systemic insecticidal activity. We determined the susceptibility of dinotefuran to field populations from major rice production areas in China from 2013 to 2015. All the populations of S. furcifera and L. striatellus were kept susceptible to dinotefuran (0.7 to 1.4-fold of S. furcifera and 1.1-to 3.4-fold of L. striatellus) However, most strains of N. lugens (except FQ15) collected in 2015 had developed moderate resistance to dinotefuran, with resistance ratios (RR) ranging from 23.1 to 100.0 folds. Cross-resistance studies showed that chlorpyrifos-resistant and buprofezin-resistant Sogatella furcifera, chlorpyrifos-resistant and fipronil-resistant L. striatellus, imidacloprid-resistant and buprofezin-resistant Nilaparvata lugens exhibited negligible or no cross-resistance to dinotefuran. Synergism tests showed that piperonyl butoxide (PBO) produced a high synergism of dinotefuran effects in the DY15 and JS15 populations (2.14 and 2.52-fold, respectively). The obvious increase in resistance to dinotefuran in N. lugens indicates that insecticide resistance management strategies are urgently needed to prevent or delay further increase of insecticide resistance in N. lugens.

Graphical abstractDownload full-size image

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , , ,