Article ID Journal Published Year Pages File Type
5515339 Plant Physiology and Biochemistry 2017 7 Pages PDF
Abstract

•AgNPs decreased the growth of hazel cells.•AgNPs rapidly and remarkably increased major taxanes.•AgNPs-treated cells were able to inhibit the growth of cancerous HeLa cells.

The toxicity of silver nanoparticles (AgNPs) has been attributed to the generation of Ag+ ions as well as production of ROS. The latter can elicit defensive response of plant cells in different ways e.g., enhancement of secondary metabolite productions. In the present study this hypothesis was evaluated by assessment of taxanes production by suspension-cultured hazel (Corylus avellana L.) cells after treatment with AgNPs. The cells were treated with different concentrations of AgNPs (0, 2.5, 5, and 10 ppm), in their logarithmic growth phase (d7) and were harvested after 1 weak. The growth of cells and their membrane integrity decreased but extracellular electro conductivity and total dissolved solids increase by AgNPs (probably due to loosening of cell membrane). Treatment of hazel cells with AgNPs (in particular of 5 ppm) rapidly and remarkably increased the yields of two major taxanes, i.e., Taxol and baccatin III; so that 24 h of the treatment their contents reached to 378% and 163% of the control, respectively. Increase of Taxanes was accompanied by the increase of total soluble phenols. The extracts of AgNPs-treated cells were able to inhibit the growth of cancerous HeLa cells and reduce their viability to 60% of the control. The results suggest the elicitation of suspension-cultured hazel cells with AgNPs as a procedure for rapid enhancement of anticancer taxanes biosynthesis by the cells.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, ,