Article ID Journal Published Year Pages File Type
5515533 Plant Physiology and Biochemistry 2017 8 Pages PDF
Abstract

•The StInvInh2 promoter was characterized.•StInvInh2 is mainly expressed in tubers.•The activity of StInvInh2 promoter in cold stored tubers was genotype dependents.

Potato (Solanum tuberosum L.) vacuolar invertase (β-fructofuranosidase; EC 3.2.1.26) inhibitor 2 (StInvInh2) plays an important role in cold-induced sweetening (CIS) of potato tubers. The transcript levels of StInvInh2 were increased by prolonged cold in potato tubers with CIS-resistance but decreased in potato tubers with CIS-sensitivity. However, the transcript regulation mechanisms of StInvInh2 responding to prolonged cold are largely unclear in CIS-resistant and CIS-sensitive genotypes. In the present study, the 5′-flanking sequence of the StInvInh2 was cloned, and cis-acting elements were predicted. No informative differences in StInvInh2 promoter structure between resistant and sensitive-CIS potato genotypes were observed. Histochemical assay showed that the promoter of StInvInh2 mainly governed β-glucuronidase (GUS) expression in potato microtubers. Quantitative analysis of GUS expression suggested that StInvInh2 promoter activity was enhanced by prolonged cold in CIS-resistant genotype tubers but suppressed in CIS-sensitive tubers. These findings provide essential information regarding transcriptional regulatory mechanisms of StInvInh2 in cold-stored tubers contrasting CIS capacity.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , ,