Article ID Journal Published Year Pages File Type
5549869 Experimental and Toxicologic Pathology 2016 7 Pages PDF
Abstract

Drug-induced liver injury (DILI) is a common problem in human medicine and it is a major reason to withdraw marketed drugs. However, the mechanism of DILI is still less known. Damage-associated molecular patterns (DAMPs), such as high-mobility group boxes (HMGBs), S100 proteins and heat shock proteins (HSPs), are released from injured or necrotic cells, bind to toll-like receptors (TLRs) and modulate inflammatory reactions. Here we investigated the kinetics of DAMPs, TLRs and MHC class II in a rat model of DILI with thioacetamide (TAA). After TAA administration, extensive necrosis was observed on days 1 and 2, followed by infiltration of inflammatory cells on day 3. The levels of serum liver enzymes also peaked on day 1. Expression of HMGB-1, -2 and S100A4 peaked on day 2. TLR-4 was up-regulated on day 3. The number of MHC class II-positive macrophages increased until day 2. These results suggest that HMGB-1, -2 and S100A4 are associated with hepatocellular necrosis and that DAMPs may activate TLR-4 and MHC class II during TAA-induced liver injury. Our data would contribute to the elucidation of the mechanism of DILI.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , , ,