Article ID Journal Published Year Pages File Type
5585079 Arthropod Structure & Development 2017 9 Pages PDF
Abstract
In this paper we systematically address this question for the first time, with a focus on practical, easily accessible and common lab-methods including storage in water, ethanol, glutaraldehyde, freezing and desiccation. We performed a comprehensive and sensitive non-destructive Dynamic Mechanical Analysis (DMA) on locust hind leg tibiae using a three-point-bending setup. Our results show that from all tested treatments, freezing samples at −20 °C was the best option to maintain the original values for Young's modulus and damping properties of insect cuticle. In addition, our results indicate that the damping properties of locust hind legs might be mechanically optimized in respect to the jumping and kicking direction.
Related Topics
Life Sciences Agricultural and Biological Sciences Insect Science
Authors
, , ,