Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5593394 | Journal of Thermal Biology | 2017 | 6 Pages |
Abstract
It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15 min of warm-up at 30% PPO at 30 °C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (â1 °C; 7.5 g kgâ1) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2 °C, 33.8±0.9 °C, respectively) were lower than those in the CON (37.5±0.3 °C; P<0.001, 34.8±0.8 °C; P<0.01, respectively) and PRE (37.4±0.2 °C; P<0.01, 34.6±0.7 °C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7 min) compared to that in the CON (52.0±11.9 min; effect size [ES]=0.78) and PRE (56.9±10.4 min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Keisuke Takeshima, Sumire Onitsuka, Zheng Xinyan, Hiroshi Hasegawa,