Article ID Journal Published Year Pages File Type
563750 Signal Processing 2010 13 Pages PDF
Abstract

Data compression techniques mainly consist of two operations, data compression itself and a consequent data de-compression. In real time, the compressor and de-compressor are causal and, at a given time, may process (or ‘remember’) only a fragment of the input signal. In the latter case, we say that such a filter has a finite memory. We study a new technique for optimal real-time data compression. Our approach is based on a specific formulation of two related problems so that one problem is stated for data compression and another one for data de-compression. A compressor and de-compressor satisfying conditions of causality and memory are represented by matrices with special forms, A and B, respectively. A technique for the solution of the problems is developed on the basis of a reduction of minimization problems, in terms of matrices A and B, to problems in terms of specific blocks of A and B. The solutions represent data compressor and data de-compressor in terms of blocks of those matrices that minimize associated error criteria. The analysis of the associated errors is also provided.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,