Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
564376 | Digital Signal Processing | 2016 | 9 Pages |
In a compressive sensing (CS) framework, a sparse signal can be stably reconstructed at a reduced sampling rate. Quantization and noise corruption are inevitable in practical applications. Recent studies have shown that using only the sign information of measurements can achieve accurate signal reconstruction in a CS framework. We consider the problem of reconstructing a sparse signal from 1-bit quantized, Gaussian noise corrupted measurements. In this paper, we present a variational Bayesian inference based 1-bit compressive sensing algorithm, which essentially models the effect of quantization as well as the Gaussian noise. A variational message passing method is adopted to achieve the inference. Through numerical experiments, we demonstrate that our algorithm outperforms state-of-the-art 1-bit compressive sensing algorithms in the presence of Gaussian noise corruption.