Article ID Journal Published Year Pages File Type
5741667 Ecological Indicators 2017 14 Pages PDF
Abstract

•The urban land expanded drastically with intensive development in the ZS Island.•The urban expansion was positively correlated with that of the nighttime lights.•The island urbanized in the near-shore areas with low altitude and gentle slope.•A decrease in NPP and a degradation in habitat quality were identified.•Understanding island urbanization process and consequences is key for management.

Islands, which provide multiple ecosystem services, are subject to increasing urbanization pressure due to the ongoing marine development, especially in developing countries. Insights into the island urbanization mechanism and its ecological consequences are essential to sustainable development. In the present paper, the satellite images, nighttime lights, and topographic data were integrated to characterize the spatially explicit urbanization process and mechanism during 1995-2011 in the Zhoushan Island, East China. Furthermore, the corresponding spatially explicit changes in ecosystem services, including net primary productivity (NPP), carbon sequestration and oxygen production (CSOP), nutrient cycling, crop production, and habitat quality, were quantified based on the Carnegie-Ames-Stanford Approach (CASA) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models. The results showed that the Zhoushan Island had experienced a rapid urbanization over the years, with significant urban encroachment on the farmland and tidal flat. Moreover, the urban land expansion was positively correlated with that of the nighttime lights and negatively correlated with the elevation, slope, and the distance to shoreline. These indicated that the urban expansion was resulted from the enhancement of socioeconomic activities, and concentrated in the near-shore areas with low altitude and gentle slope. The urban encroachment on other land use types resulted in a decrease of 3.4 Gg C a−1 NPP, 8.7 Gg a−1 CSOP, 13.2 Gg a−1 nutrient cycling, and 12.3 t a−1 crop production, respectively. In addition, the habitat quality in 11% area of this island degraded substantially. Therefore, to achieve sustainable development of islands, it is urgent to implement more stringent policies, such as island spatial regulation, environmental impact assessment, intensive land use, and urban greening, etc.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , , ,