Article ID Journal Published Year Pages File Type
5741708 Ecological Indicators 2017 7 Pages PDF
Abstract
It is necessary to detect how much ecological redundancy or response units (RUs) exist in communities for reducing the “signal-to-noise” ratios of the observed full species data in community-based ecological research and monitoring programs. To reveal the functional redundancy in ciliated protozoan communities in marine ecosystems for both ecological research and monitoring programs, a multivariate approach (peeling procedure) was used to identify the response units to the environmental changes using a dataset of biofilm-dwelling ciliates from coastal waters of the Yellow Sea, northern China. From the full 141-species dataset, three subsets with sufficient information of the whole community (correlation coefficient >0.75) were identified as response units (RUs 1-3) at three levels of functional redundancy, which comprised 20, 26 and 27 species, respectively. These response units appeared to be interchangeable between functional equivalents on both spatial and temporal scales. In terms of relative abundance, RU1, which predominated the ciliate communities over 1-year period, and RU2, which occurred only in warm seasons (except winter) with a peak in summer, presented a decreasing trend, while RU3, which distributed all four seasons with two peaks in summer and autumn, increased with the increase of pollution level. Furthermore, high proportions of bacterivores were found in RU1 during warm seasons and represented an increase trend, while high relative abundances of algivores occurred in RUs 2 and 3 appeared to be decreasing along the pollution gradient. These results demonstrated that the ciliated protozoan assemblages have high functional redundancy in response to environmental changes in marine ecosystems.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,