Article ID Journal Published Year Pages File Type
5741800 Ecological Indicators 2017 6 Pages PDF
Abstract

•We propose a method for the automatic detection of rainfall by using acoustic recordings.•The method is an indicator of the rainfall intensity in a period of time.•We compare the results of our method with human auditory identification and data provided by a pluviometer.

The rainfall regime is one of the main abiotic components that can cause modifications in the breeding activity of animal species. It has a direct effect on the environmental conditions, and acts as a modifier of the landscape and soundscape. Variations in water quality and acidity, flooding, erosion, and sound distortion are usually related with the presence of rain. Thereby, ecological studies in populations and communities would benefit from improvements in the estimation of rainfall patterns throughout space and time.In this paper, a method for automatic detection of rainfall in forests by using acoustic recordings is proposed. This approach is based on the estimation of the mean value and signal to noise ratio of the power spectral density in the frequency band in which the sound of the raindrops falling over the vegetation layers of the forest is more prominent (i.e. 600-1200 Hz). The results of this method were compared with human auditory identification and data provided by a pluviometer. We achieved a correlation of 95.23% between the data provided by the pluviometer and the predictions of a regression model. Furthermore, we attained a general accuracy between 92.90% and 99.98% when identifying different intensity levels of rainfall on recordings.Nowadays, passive monitoring recorders have been extensively used to study of acoustic-based breeding processes of several animal species. Our method uses the signals acquired by these recorders in order to identify and quantify rainfall events in short and long time spans. The proposed approach will automatically provide information about the rainfall patterns experienced by target species based on audio recordings.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,