Article ID Journal Published Year Pages File Type
5741806 Ecological Indicators 2017 10 Pages PDF
Abstract

•M-SAVM suggests increasing flow velocity promotes macrophytes and limits epiphyton.•Zooepiphyton assemblage was affected by habitat heterogeneity and flow velocity.•Hydraulic treatment could regulate submerged macrophytes in shallow reservoirs.

Every approach to lake restoration requires the reestablishment of submerged macrophytes. However, macrophyte overgrowth in shallow lakes may lead to deterioration and a consequent necessity for restoration treatments. We assumed that a major threat to the increased trophic level in the Jankovac flow-through system arises from the sediment, where the accumulation of deciduous leaf litter and decayed macrophyte fragments could generate anoxic conditions. The integrated Water Quality Model (WQM) and the Submerged Aquatic Vegetation Model (SAVM) were combined in the Jankovac Model (JanM) and applied during the vegetated season in 2008 and 2014, with the aim to offer a possible approach to the maintenance of good water quality. The impacts of flow velocity and epiphyton growth on submerged macrophyte coverage and biomass were simulated. Biocenotic analyses suggested that epiphyton growth was more extensive in 2014 in comparison to 2008. The results of JanM indicated that increased flow velocities enhanced macrophyte growth and dissolved oxygen concentrations concurrently with the decline of epiphyton biomass. Furthermore, results suggested that epiphyton growth rate of 0.4 d−1 maintained macrophyte coverage and biomass at a satisfactory level of 70% reservoir coverage. Considering the proposed scenarios hydraulic treatment could be applied to regulate submerged macrophytes in shallow reservoirs, as an efficient and less invasive approach than sediment removal, especially in sensitive karst areas.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , ,