Article ID Journal Published Year Pages File Type
5741940 Ecological Informatics 2017 13 Pages PDF
Abstract

•We modeled wildfire probability across a fire-prone landscape.•Topography, climate, and human activity measures proved > 80% prediction accuracy.•Clear pattern with differences in wildfire risk detected across the landscape.•Fire prevention activities primarily needed on 25% of the landscape with high risk.

The preparation of probability distribution maps is the first important step in risk assessment and wildfire management. Here we employed Weights-of-Evidence (WOE) Bayesian modeling to investigate the spatial relationship between historical fire events in the Chaharmahal-Bakhtiari Province of Iran, using a wide range of binary predictor variables (i.e., presence or absence of a variable characteristic or condition) that represent topography, climate, and human activities. Model results were used to produce distribution maps of wildfire probability. Our modeling approach is based on the assumption that the probabilities reflect the observed proportions of the total landscape area occupied by the corresponding events (i.e., fire incident or no fire) and conditions (i.e., classes) of predictor variables. To assess the effect of each predictor variable on model outputs, we excluded each variable in turn during calculations. The results were validated and compared by the receiver operating characteristic (ROC) using both success rate and prediction rate curves. Seventy percent of fire events were used for the former, while the remainder was used for the latter. The validation results showed that the area under the curves (AUC) for success and prediction rates of the model that included all thirteen predictor variables that represent topography, climate, and human influences were 84.6 and 80.4%, respectively. The highest AUC for success and prediction rates (86.8 and 84.6%) were achieved when the altitude variable was excluded from the analysis. We found slightly decreased AUC values when the slope-aspect and proximity to settlements variables were excluded. These findings clearly demonstrate that the probability of a fire is strongly dependent upon the topographic characteristics of landscapes and, perhaps more importantly, human infrastructure and associated human activities. The results from this study may be useful for land use planning, decision-making for wildfire management, and the allocation of fire resources prior to the start of the main fire season.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , ,