Article ID Journal Published Year Pages File Type
5760005 Journal of Theoretical Biology 2017 24 Pages PDF
Abstract
Maintaining human cooperation in the context of common-pool resource management is extremely important because otherwise we risk overuse and corruption. To analyse the interplay between economic and ecological factors leading to corruption, we couple the resource dynamics and the evolutionary dynamics of strategic decision making into a powerful analytical framework. The traits of this framework are: (i) an arbitrary number of harvesters share the responsibility to sustainably exploit a specific part of an ecosystem, (ii) harvesters face three strategic choices for exploiting the resource, (iii) a delegated enforcement system is available if called upon, (iv) enforcers are either honest or corrupt, and (v) the resource abundance reflects the choice of harvesting strategies. The resulting dynamical system is bistable; depending on the initial conditions, it evolves either to cooperative (sustainable exploitation) or defecting (overexploitation) equilibria. Using the domain of attraction to cooperative equilibria as an indicator of successful management, we find that the more resilient the resource (as implied by a high growth rate), the more likely the dominance of corruption which, in turn, suppresses the cooperative outcome. A qualitatively similar result arises when slow resource dynamics relative to the dynamics of decision making mask the benefit of cooperation. We discuss the implications of these results in the context of managing common-pool resources.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,