Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5760348 | Journal of Theoretical Biology | 2017 | 10 Pages |
Abstract
The interconnected topology of transcriptional regulatory networks (TRNs) readily lends to mathematical (or in silico) representation and analysis as a stoichiometric matrix. Such a matrix can be 'solved' using the mathematical method of extreme pathway (ExPa) analysis, which identifies uniquely activated genes subject to transcription factor (TF) availability. In this manuscript, in silico multi-tissue TRN models of brain, liver and gonad were used to study reproductive endocrine developmental programming in zebrafish (Danio rerio) from 0.25Â h post fertilization (hpf; zygote) to 90 days post fertilization (dpf; adult life stage). First, properties of TRN models were studied by sequentially activating all genes in multi-tissue models. This analysis showed the brain to exhibit lowest proportion of co-regulated genes (19%) relative to liver (23%) and gonad (32%). This was surprising given that the brain comprised 75% and 25% more TFs than liver and gonad respectively. Such 'hierarchy' of co-regulatory capability (brain
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
D. Hala,