Article ID Journal Published Year Pages File Type
5761182 European Journal of Agronomy 2017 14 Pages PDF
Abstract
The calibration and evaluation of STICS-MILA revealed a high sensitivity to the initial amount of primary inoculum (a forcing variable in STICS-MILA) and thus the need to properly simulate the summering and overwintering pathogen survival. The simulations in the context of future climate showed a significant change in host-pathogen synchronism: in the far future, according to RCP 4.5 and 8.5 scenarios, disease onset is expected to occur not only with an advance of around one month but also at an earlier developmental stage of wheat crops. This positive effect results from rising temperatures, nevertheless partly counter-balanced during spring by lower wetness frequency. The crop growth accelerates during juvenile stages, providing a greater support for disease development. The resulting microclimate shortens latency periods and increases infection and sporulation efficiencies, thus causing more infectious cycles. An increase of final disease severity is thus forecasted with climate change.
Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , , , , ,