Article ID Journal Published Year Pages File Type
5762308 Journal of Cereal Science 2017 7 Pages PDF
Abstract
Alternative aeration and gas stabilization strategies are required for the production of starch-based cellular food systems, such as gluten-free bread. In the present study, density and temperature were monitored in mixing experiments without yeast, aiming at maximum mechanical aeration. Additionally, the same trials were performed with subsequent biological aeration, including yeast fermentation and baking. As a result, the gas volume fraction was elevated to 21%, instead of 6% with conventional kneading. Reducing the water content from 120% to 90% (flour/starch weight base) raised dough viscosity and temperature without affecting the state of aeration. The bread volume was strongly influenced by the dough temperature after mixing (R2 = 0.98), since it depended on yeast activity. The implemented process is suitable to aerate starch-based dough systems mechanically and enables the production of gluten-free bread with high volume and fine pores.
Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , ,