Article ID Journal Published Year Pages File Type
5763953 Aquacultural Engineering 2017 31 Pages PDF
Abstract
With additional organic carbon, fish waste can be used as a substrate to produce bioflocs, a protein source for aquaculture animals. In choosing a carbon source, one should consider convenience, cost and biodegradability. This study investigates the efficiency of poly-β-hydroxybutyric acid (PHB), a biologically degradable polymer, as a carbon source to produce bioflocs in suspended growth bioreactors (SGRs), PHB-SGRs, compared with glucose (GLU-SGRs). The C:N ratio in PHB-SGRs could be maintained around 15:1. The volatile suspended solids (VSS) yield was 2.94 ± 0.72 gVSS/g fish waste for PHB-SGRS and 4.90 ± 0.23 gVSS/g fish waste for GLU-SGRs. The recycling rate of nitrogen in aquaculture solid waste was 56 ± 2% and 87 ± 7% for the PHB-SGRs and Glu-SGRs. No significant differences were found in the bioflocs produced and in the crude protein content of the produced bioflocs between PHB-SGRs and GLU-SGRs. PHB-SGRs and GLU-SGRs could remove dissolved inorganic nitrogen from aquaculture wastewater, with average values of 11.82 ± 8.95 and 16.27 ± 3.95 mg/g TSS/d. Because the calculation of the added amount of carbon and the multiple additions of carbon was avoided, PHB is considered to be a good choice as an organic carbon source for this process, even though not all parameters used for assessment were better than those of GLU-SGRs.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , , ,