Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5764298 | Aquatic Toxicology | 2017 | 8 Pages |
Abstract
Acute exposure to crude oil polycyclic aromatic hydrocarbons (PAH) can severely impair cardiorespiratory function and swim performance of larval fish; however, the effects of acute oil exposure on later life stages and the capacity for subsequent recovery is less clear. Red drum (Sciaenops ocellatus) is an economically important apex predator native to the Gulf of Mexico, which was directly exposed to the 2010 Deep Water Horizon (DWH) oil spill. Here we examine impact and recovery of young adult red drum from exposure to concentrations of 0, 4.1, and 12.1 μgLâ1 ΣPAH50 naturally weathered oil-water accommodated fractions (geometric mean), which are well within the range of concentrations measured during the DWH incident. We focused on aerobic scope (ASc), burst- and critical swimming speeds (Uburst and Ucrit), cost of transport (COT), as well as the capacity to repay oxygen debt following exhaustive exercise (EPOC), which are critical parameters for success of all life stages of fishes. A 24 h acute exposure to 4.1 μgLâ1 ΣPAH caused a significant 9.7 and 12.6% reduction of Uburst and Ucrit respectively, but no change in ASc, COT or EPOC, highlighting a decoupled effect on the respiratory and swimming systems. A higher exposure concentration, 12.1 μgLâ1 ΣPAH, caused an 8.6 and 8.4% impairment of Uburst and Ucrit, as well as an 18.4% reduction in ASc. These impairments persisted six weeks post-exposure, suggesting that recorded impacts are entrenched. Large predatory fishes are critically dependent on the cardiorespiratory and swimming systems for ecological fitness, and long-term impairment of performance due to acute oil exposure suggests that even acute exposure events may have long lasting impacts on the ecological fitness of affected populations.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Aquatic Science
Authors
J.L. Johansen, A.J. Esbaugh,