Article ID Journal Published Year Pages File Type
5765731 Harmful Algae 2017 12 Pages PDF
Abstract

•Coral reef macroalgae modify carbon-concentrating mechanism activity under future CO2 emission scenarios.•Algae are affected differently by treatment conditions, changes in photosynthetic, reproductive and mortality rates are species-specific.•Growth rates of the macroalgae tested were not enhanced by future scenarios in isolation or in combination with nutrient enrichment.•The species tested are unlikely to pose an increased threat to corals under future conditions.

Coral reef macroalgae are expected to thrive in the future under conditions that are deleterious to the health of reef-building corals. Here we examined how macroalgae would be affected by exposure to future CO2 emission scenarios (pCO2 and temperature), enriched nutrients and combinations of both. The species tested, Laurencia intricata (Rhodophyta), Turbinaria ornata and Chnoospora implexa (both Phaeophyceae), have active carbon-concentrating mechanisms but responded differently to the treatments. L. intricata showed high mortality under nutrient enriched RCP4.5 (“reduced” CO2 emission) and RCP8.5 (“business-as-usual” CO2 emission) and grew best under pre-industrial (PI) conditions, where it could take up carbon using external carbonic anhydrase combined, potentially, with proton extrusion. T. ornata's growth rate showed a trend for reduction under RCP8.5 but was unaffected by nutrient enrichment. In C. implexa, highest growth was observed under PI conditions, but highest net photosynthesis occurred under RCP8.5, suggesting that under RCP8.5, carbon is stored and respired at greater rates while it is directed to growth under PI conditions. None of the species showed growth enhancement under future scenarios, nutrient enrichment or combinations of both. This leads to the conclusion that under such conditions these species are unlikely to pose an increasing threat to coral reefs.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , ,