Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5766743 | Environmental and Experimental Botany | 2017 | 10 Pages |
Abstract
Salinity hinders plant growth and results in reduced crop yield. The use of plant growth-promoting endophytic bacteria is an eco-friendly strategy to counteract such stresses and confer tolerance to the host. Endophytic bacteria have been recognized for their active role in auxin production; however, little is known about their ability to produce abscisic acid (ABA). In recent studies, the bacterial endophyte Bacillus amyloliquefaciens RWL-1 has been found to produce ABA, and as such, has the potential to increase plant resistance to salinity stress. Results showed that RWL-1 produced varying concentrations of ABA (0.32 ± 0.015-0.14 ± 0.030 ng mLâ1) under normal and saline conditions. The ability of RWL-1 to produce ABA was reduced in response to increasing salinity; however, it maintained its growth by up-regulating production of essential amino acids (glutamic acid and proline). To further investigate the potential of this endophytic bacterium, a plant-microbe interaction experiment was conducted which showed that RWL-1 inoculation significantly increased growth attributes of rice plants as compared to non-inoculated control plants under salinity stress. Micrographs also revealed active symbiosis of RWL-1 with plant roots under normal and salinity stress conditions. The essential amino acids (glutamic acid, aspartic acid, phenylalanine, proline, and cysteine) were significantly up-regulated by RWL-1 inoculation under salinity stress. In addition, the stress-sensitive endogenous ABA levels were significantly reduced, whereas the levels of endogenous salicylic acid were significantly higher in RWl-1-inoculated plants than in control plants exposed to the same level of salinity stress. The current findings suggest that the phytohormone-producing abilities of endophytic bacteria can increase plant resistance to salinity, in turn improving agricultural productivity.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Ecology, Evolution, Behavior and Systematics
Authors
Raheem Shahzad, Abdul Latif Khan, Saqib Bilal, Muhammad Waqas, Sang-Mo Kang, In-Jung Lee,