Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5772515 | Journal of Number Theory | 2017 | 12 Pages |
Abstract
For any positive integers k,m,n with mâ¥2 and kâ¤n, let T(m,n,k) be the sum of all the multiple Hurwitz zeta valuesζ(s1,s2,â¦,sk;â12,â12,â¦,â12) of weight mn and depth k with arguments being multiples of m, i.e.,T(m,n,k)=âs1+s2+â¦+sk=nsjâNζ(ms1,ms2,â¦,msk;â12,â12,â¦,â12). In this note, we obtain the evaluationT(m,n,k)=âa+b=na,bâN0(â1)aâk(ak)â
ζ({m;â12}a)=â
ζâ({m;â12}b), where ζ({m;â12}a) and ζâ({m;â12}b) denote the multiple Hurwitz zeta values and multiple Hurwitz zeta-star values respectively. Moreover, we give the evaluations of ζ({m;â12}n) and ζâ({m;â12}n) when m is even.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Zhongyan Shen, Lirui Jia,