Article ID Journal Published Year Pages File Type
5804588 Veterinary Parasitology 2012 11 Pages PDF
Abstract

The effect of inhibitors of histone deacetylase (HDAC) on Apicomplexa has been previously reported with the discovery of apicidin, a cyclic tetrapeptide having broad-spectrum antiparasitic activity. In the current study, we expressed Babesia bovis (B. bovis) recombinant-HDAC 3 (rBbHDAC3) as a GST-fusion protein in Escherichia coli (E. coli) and found that it was antigenic. An antiserum against the recombinant protein was generated in mice. The mice serum demonstrated the presence of HDAC in B. bovis by a Western blot assay. The murine anti-rBbHDAC3 reacted with B. bovis, Babesia bigemina (B. bigemina), Theileria equi (T. equi), and Babeisa caballi (B. caballi) merozoites in the indirect fluorescent antibody test (IFAT). Furthermore, the HDAC-enzymatic activity of the rBbHDAC3 protein was evaluated by a colorimetric assay. The enzymatic activity of rBbHDAC3 was inhibited by 100 ng/ml of apicidin, and the inhibitory effect of apicidin was dose-dependent. The inhibition of BbHDAC3 by apicidin was confirmed by Western blot, IFAT, and reverse transcription-polymerase chain reaction (RT-PCR). Finally, apicidin potentially inhibited the in vitro growth of Babesia parasites. The lower IC50 values of apicidin against apicomplexan parasites than those of mammalian cells point to HDAC as an excellent drug target. The findings of the present study indicate that BbHDAC3 is a potential target for apicidin and might be a promising target for the development of novel anti-babesial drugs.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , , , , ,