Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5911055 | Infection, Genetics and Evolution | 2013 | 7 Pages |
Abstract
Staphylococcus aureus biofilm associated infections remains a major clinical concern in patients with indwelling devices. Quantitative real-time PCR (qPCR) can be used to investigate the pathogenic role of such biofilms. We describe qPCRs for 12 adhesion and biofilm-related genes of four S. aureus isolates which were applied during in vitro biofilm development. An endogenous control (16S rRNA) was used for signal normalization. We compared the qPCR results with structural analysis using scanning electron microscopy (SEM). The SEM studies showed different cellular products surrounding the aggregated cells at different times of biofilm formation. Using qPCR, we found that expression levels of the gene encoding fibronectin binding protein A and B and clumping factor B (fnbA/B and clfB), which involves in primary adherence of S. aureus, were significantly increased at 24Â h and decreased slightly and variably at 48Â h when all 4 isolates were considered. The elastin binding protein (ebps) RNA expression level was significantly enhanced more than 6-fold at 24 and 48Â h compared to 12Â h. Similar results were obtained for the intercellular adhesion biofilm required genes type C (icaC). In addition, qPCR revealed a fluctuation in expression levels at different time points of biofilm growth of other genes, indicating that different parameter modes of growth processes are operating at different times.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Ecology, Evolution, Behavior and Systematics
Authors
Salman Sahab Atshan, Mariana Nor Shamsudin, Arunkumar Karunanidhi, Alex van Belkum, Leslie Than Thian Lung, Zamberi Sekawi, Jayakayatri Jeevajothi Nathan, King Hwa Ling, Johnson Shueh Chong Seng, Alreshidi Mateg Ali, Salwa A. Abduljaleel,