Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5911061 | Infection, Genetics and Evolution | 2013 | 13 Pages |
Abstract
Group A rotaviruses (RVA) are the leading cause of severe gastroenteritis in infants and young children worldwide. Due to their epidemiological complexity, it is important to compare the genetic characteristics of vaccine strains with the RVA strains circulating before the introduction of the vaccine in the Tunisian immunization program. In the present study, the nucleotide sequences of VP7 and VP8â (n = 31), the main targets for neutralizing antibodies, were determined. Comparison of antigenic epitopes of 11 G1P[8], 12 G2P[4], 4 G3P[8], 2 G4P[8], 1 G6P[9] and 1 G12P[8] RVA strains circulating in Tunisia from 2006 to 2011 with the RVA strains present in licensed vaccines showed that multiple amino acid differences existed in or near putative neutralizing domains of VP7 and VP8â. The Tunisian G3 RVA strains were found to possess a potential extra N-linked glycosylation site. The Tunisian G4 RVA were closely related to the G4 vaccine strain in RotaTeq, belonging to the same lineage, but the alignment of their VP7 amino acids revealed an insertion of an asparagine residue at position 76 which is close to a glycosylation site (aa 69-71). Despite several differences detected between Tunisian and vaccine strains, which may affect binding of neutralizing antibodies, both vaccines are known to protect against the vast majority of the circulating genotypes, providing an indication of the high vaccine efficiency that can be expected in a future rotavirus immunization program.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Ecology, Evolution, Behavior and Systematics
Authors
Mouna Ben Hadj Fredj, Meriam BenHamida-Rebaï, Elisabeth Heylen, Mark Zeller, Amal Moussa, Saoussen Kacem, Marc Van Ranst, Jelle Matthijnssens, Abdelhalim Trabelsi,