Article ID Journal Published Year Pages File Type
5913242 Trends in Plant Science 2015 10 Pages PDF
Abstract
Many aspects of development in the model plant Arabidopsis thaliana involve regulated distribution of the hormone auxin by the PIN-FORMED (PIN) family of auxin efflux carriers. The role of PIN-mediated auxin transport in other plants is not well understood, but studies in a wider range of species have begun to illuminate developmental mechanisms across land plants. In this review, I discuss recent progress in understanding the evolution of PIN-mediated auxin transport, and its role in development across the green plant lineage. I also discuss the idea that changes in auxin biology led to morphological novelty in plant development: currently available evidence suggests major innovations in auxin transport are rare and not associated with the evolution of new developmental mechanisms.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
,