Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
611526 | Journal of Colloid and Interface Science | 2008 | 10 Pages |
The electrophoresis of a charge-regulated spherical particle at an arbitrary position in a charged spherical cavity is modeled under conditions of low surface potential (<25 mV) and weak applied electric field (<25 kV/m<25 kV/m). The charged cavity allows us to simulate the effect of electroosmotic flow, and the charge-regulated nature of the particle permits us to model various types of surface. The problem studied previously is reanalyzed based on a more rigorous electric force formula. In particular, the influences of various types of charged conditions on the electrophoretic behavior of a particle and the roles of all the relevant forces acting on the particle are examined in detail. Several new results are found. For instance, the mobility of a particle has a local minimum as the thickness of a double layer varies, which is not seen in the cases where the surface of a particle is maintained at a constant potential and at a constant charge density.
Graphical abstractElectrophoresis of a charge-regulated sphere in a charged cavity.Figure optionsDownload full-size imageDownload as PowerPoint slide