Article ID Journal Published Year Pages File Type
6293262 Ecological Indicators 2016 12 Pages PDF
Abstract
Water scarcity is a serious global problem, and accurate estimations are urgently needed. The Water stress index (WSI) is one of the most commonly used methods for global or large scale water scarcity evaluation, but this method lacks of consideration of water demand and water supply positions non-overlapped spatial distribution, tends to overestimate water stress when applied to a moderate resolution grid (e.g., 1 km). In this study, we used a non-overlapping water supply-and-demand unit approach to improve the calculation scheme and constructed a spatial unit non-overlapping WSI model (Sun-WSI model). We then applied the new model to the Yarlung Tsangpo-Brahmaputra River (TBR) and estimated monthly water stress from 2006 to 2012 with a 1 km spatial resolution. The results showed that the determination coefficient (R2) between the normalized Drought Index (DI) and water stress was mainly in the range of 0.2-0.7, accounting for 77.4% of the study area. The spatial pattern of water stress estimated by the Sun-WSI model was consistent with the DI. Further analysis showed that both overall and grid water stress estimated by the Sun-WSI model were close to the results from existing studies; however the Sun-WSI model had a higher spatial resolution. With a 1 km resolution, the Sun-WSI model performed better than the conventional WSI with respect to both overall results and spatial details. This suggests that the Sun-WSI model is suitable for evaluating regional or moderate-resolution grid water scarcity.
Keywords
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , , ,