Article ID Journal Published Year Pages File Type
6295845 Ecological Informatics 2016 16 Pages PDF
Abstract
We evaluated the usability of the red (R), green (G), and blue (B) digital numbers (DNRGB) extracted from daily phenological images of a tropical rainforest in Malaysian Borneo. We examined temporal patterns in the proportions of DNR, DNG, and DNB as percentages of total DN (denoted as %R, %G and %B), in the hue, saturation, and lightness values in the HSL color model, and in a green excess index (GEI) of the whole canopy and of individual trees for 2 years. We also examined temporal patterns in the proportions of the red, green, and blue reflectance of the whole canopy surface as percentages of total reflectance (denoted as %ref_R, %ref_G, and %ref_B), and vegetation indices (the normalized-difference vegetation index, enhanced vegetation index, and green-red vegetation index) of the whole canopy by using daily measurements from quantum sensors. The temporal patterns of %RGB and saturation of individual trees revealed the characteristics of tree phenology caused by flowering, coloring, and leaf flushing. In contrast, those of the whole canopy did not, nor did those of %ref_R, %ref_G, or %ref_B, or the vegetation indices. The temporal patterns of GEI, however, could detect differences among individual trees caused by leaf flushing and coloring. Our results show the importance of installing multiple time-lapse digital cameras in tropical rainforests to accurately evaluate the sensitivity of tree phenology to meteorological and climatic changes. However, more work needs to be done to adequately describe whole-canopy changes.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , , , ,