Article ID Journal Published Year Pages File Type
6296108 Ecological Modelling 2016 20 Pages PDF
Abstract
Forest insect infestations behave as complex systems and can be represented using agent-based modeling (ABM) approaches to explore and optimize eradication strategies such as biological control. This study develops novel geospatial agent-based EAB-BioCon model for the interactions of emerald ash borer (EAB) with the parasitoid Tetrastichus planipennisi (TP) wasp in order to evaluate the spread of forest infestations. The model is implemented on geospatial data from City of Oakville, Canada and is composed of: (1) EAB-Baseline model, representing EAB geospatial dynamics; and (2) EAB-TP model that employs scenarios to measure EAB response to variations in TP-based biological control strategies. The EAB-BioCon model simulation results indicate that variations of TP densities, timing of TP release, and number of TP release points are important considerations in the EAB biological control and thus providing useful conclusions in decision making and management.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,