Article ID Journal Published Year Pages File Type
6298131 Biological Conservation 2016 10 Pages PDF
Abstract
Restoration of native species may be hampered by competition with non-native species. The outcomes of competition are often context-dependent, with one species dominating under some conditions but not others. Where non-natives differ from natives in their ability to tolerate stressful environmental conditions, restoration practitioners may be able to manipulate conditions or strategically locate restoration projects along naturally occurring stress gradients to favor native species. We tested the responses of native oysters and a suite of non-native sessile invertebrate species (mostly soft-bodied organisms) to varying tidal elevations, shoreline types, and distances from source populations. Cover of non-natives was lower at higher tidal elevation and far from adult populations. Native oyster recruitment was also reduced at the high tidal elevation. At this elevation oyster dominance was increased, but abundance was reduced. To test an adaptive management approach, we moved substrates from the low to high tidal elevations. Cover of non-natives had decreased dramatically one year later, while oyster metrics were unaffected or improved compared to those on substrates remaining at the low elevation. Our study indicates that reduction of non-native species abundance, often an explicit goal of restoration, may be achieved by strategic location of restoration units, although abundance of target species may also be reduced, at least over the short term. However, restoration practitioners may be able to increase abundance of target species and reduce non-natives by applying stress differentially over time, with benign conditions during sensitive early life stages, and increasing stress after target organisms become more tolerant.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , ,