| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6301606 | Ecological Engineering | 2015 | 8 Pages |
Abstract
Forestry harvesting on peats is known to result in significant losses of soil phosphorus (P) to adjacent waters, and the issue is becoming an increasingly serious concern as peatland forest stocks mature and reach harvestable age. One potential solution could be the use of low-cost P recovery techniques based on the chemical precipitation and/or adsorption of the dissolved fraction of soil P, which would otherwise be lost. Such recovery techniques have shown promise in similar applications on mineral soils. However, the interaction of peat with P adsorbing materials can significantly alter their adsorptive characteristics, and it is consequentially not known what materials might be suitable for this application. This study compared the performance of six potential soil amendments (aluminum water treatment residual (Al-WTR), crushed concrete, gypsum, magnesium hydroxide, magnesium oxide, and steel wool) in removing P from aqueous solution in the presence of a typical forest peat soil. Comparison of adsorption isotherms plotted from these batch adsorption studies showed that the observed P adsorption maxima of Al-WTR and steel wool were increased by the presence of peat, from 10.6 mg gâ1 and 20.4 mg gâ1, to 11.8 mg gâ1 and 52.5 mg gâ1, respectively. In contrast, the observed P adsorption maxima of crushed concrete, gypsum, and magnesium oxide were reduced in the presence of peat, by 44%, 87%, and 37%, respectively. The maximum P adsorption achieved by magnesium hydroxide was increased from 29.8 mg gâ1 to 59 mg gâ1 at an amendment to peat-solid ratio of 1:4, but decreased from 73.9 mg gâ1 to 23.6 mg gâ1 at an amendment to peat-solid ratio of 1:10. It was concluded that Al-WTR, in particular, shows considerable promise for use as a soil amendment for P immobilization in a peat environment.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Ecology, Evolution, Behavior and Systematics
Authors
O. Callery, R.B. Brennan, M.G. Healy,
