Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6368886 | Journal of Theoretical Biology | 2016 | 14 Pages |
Abstract
Several animals use properties of Earth's magnetic field as a part of their navigation toolkit to accomplish tasks ranging from local homing to continental migration. Studying these behaviors has led to the postulation of both a magnetite-based sense, and a chemically based radical-pair mechanism. Several researchers have proposed models aimed at both understanding these mechanisms, and offering insights into future physiological experiments. The present work mathematically implements a previously developed conceptual model for sensing and processing magnetite-based magnetosensory feedback by using dynamic neural fields, a computational neuroscience tool for modeling nervous system dynamics and processing. Results demonstrate the plausibility of the conceptual model's predictions. Specifically, a population of magnetoreceptors in which each individual can only sense directional information can encode magnetic intensity en masse. Multiple populations can encode both magnetic direction, and intensity, two parameters that several animals use in their navigational toolkits. This work can be expanded to test other magnetoreceptor models.
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Brian K. Taylor,