Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6369323 | Journal of Theoretical Biology | 2016 | 32 Pages |
Abstract
The development of mathematical models that can predict photosynthetic productivity of microalgae under transient conditions is crucial for enhancing large-scale industrial culturing systems. Particularly important in outdoor culture systems, where the light irradiance varies greatly, are the processes of photoinhibition and photoacclimation, which can affect photoproduction significantly. The former is caused by an excess of light and occurs on a fast time scale of minutes, whereas the latter results from the adjustment of the light harvesting capacity to the incoming irradiance and takes place on a slow time scale of days. In this paper, we develop a dynamic model of microalgae growth that simultaneously accounts for the processes of photoinhibition and photoacclimation, thereby spanning multiple time scales. The properties of the model are analyzed in connection to PI-response curves, under a quasi steady-state assumption for the slow processes and by neglecting the fast dynamics. For validation purposes, the model is calibrated and compared against multiple experimental data sets from the literature for several species. The results show that the model can describe the difference in photosynthetic unit acclimation strategies between Dunaliella tertiolecta (n-strategy) and Skeletonema costatum (s-strategy).
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Andreas Nikolaou, Philipp Hartmann, Antoine Sciandra, Benoît Chachuat, Olivier Bernard,