Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6369695 | Journal of Theoretical Biology | 2015 | 6 Pages |
Abstract
As a widespread type of protein post-translational modification, O-GlcNAcylation plays crucial regulatory roles in almost all cellular processes and is related to some diseases. To deeply understand O-GlcNAcylated mechanisms, identification of substrates and specific O-GlcNAcylated sites is crucial. Experimental identification is expensive and time-consuming, so computational prediction of O-GlcNAcylated sites has considerable value. In this work, we developed a novel O-GlcNAcylated sites predictor called PGlcS (Prediction of O-GlcNAcylated Sites) by using k-means cluster to obtain informative and reliable negative samples, and support vector machines classifier combined with a two-step feature selection. The performance of PGlcS was evaluated using an independent testing dataset resulting in a sensitivity of 64.62%, a specificity of 68.4%, an accuracy of 68.37%, and a Matthew׳s correlation coefficient of 0.0697, which demonstrated PGlcS was very promising for predicting O-GlcNAcylated sites. The datasets and source code were available in Supplementary information.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Xiaowei Zhao, Qiao Ning, Haiting Chai, Meiyue Ai, Zhiqiang Ma,