Article ID Journal Published Year Pages File Type
6369711 Journal of Theoretical Biology 2015 6 Pages PDF
Abstract
Protein folding is a very complicated and highly cooperative dynamic process. However, the folding kinetics is likely to depend more on a few key structural features. Here we find that secondary structures can determine folding rates of only large, multi-state folding proteins and fails to predict those for small, two-state proteins. The importance of secondary structures for protein folding is ordered as: extended β strand>α helix>bend>turn>undefined secondary structure>310 helix>isolated β strand>π helix. Only the first three secondary structures, extended β strand, α helix and bend, can achieve a good correlation with folding rates. This suggests that the rate-limiting step of protein folding would depend upon the formation of regular secondary structures and the buckling of chain. The reduced secondary structure alphabet provides a simplified description for the machine learning applications in protein design.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , ,