Article ID Journal Published Year Pages File Type
6370215 Journal of Theoretical Biology 2014 7 Pages PDF
Abstract
RNA and DNA syntheses share many properties. Therefore, the existence of 'swinger' RNAs, presumed 'orphan' transcripts matching genomic sequences only if transcription systematically exchanged nucleotides, suggests replication producing swinger DNA. Transcripts occur in many short-lived copies, the few cellular DNA molecules are long-lived. Hence pressures for functional swinger DNAs are greater than for swinger RNAs. Protein coding properties of swinger sequences differ from original sequences, suggesting rarity of corresponding swinger DNA. For genes producing structural RNAs, such as tRNAs and rRNAs, three exchanges (A<->T, C<->G and A<->T+C<->G) conserve self-hybridization properties. All nuclear eukaryote swinger DNA sequences detected in GenBank are for rRNA genes assuming A<->T+C<->G exchanges. In brachyuran crabs, 25 species had A<->T+C<->G swinger 18S rDNA, all matching the reverse-exchanged version of regular 18S rDNA of a related species. In this taxon, swinger replication of 18S rDNA apparently associated with, or even resulted in species radiation. A<->T+C<->G transformation doesn't invert sequence direction, differing from inverted repeats. Swinger repeats (detectable only assuming swinger transformations, A<->T+C<->G swinger repeats most frequent) within regular human rRNAs, independently confirm swinger polymerizations for most swinger types. Swinger replication might be an unsuspected molecular mechanism for ultrafast speciation.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
,