Article ID Journal Published Year Pages File Type
6370272 Journal of Theoretical Biology 2014 9 Pages PDF
Abstract
The contribution of covalently closed circular DNA (cccDNA) and dendritic cells (DCs) to the progression of chronic hepatitis B virus (HBV) infection remains largely unknown. A dynamic model with seven cell types was proposed based on the biological mechanisms of viral replication and the host immune response. The cccDNA self-amplification rate was found to be closely related to both the basic reproduction number of the virus and the immune response. The combination of the cccDNA self-amplification rate and the initial activated DC count induces rich dynamics. Applying our model to the clinical data of untreated patients, we found that chronic patients have a high cccDNA self-amplification rate. For antiviral treatment, an overall drug effectiveness was introduced and the critical drug effectiveness was obtained. The model predicts that timely long-term therapy is needed to reduce the symptoms of HBV and to maintain the benefits of treatment.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , ,